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Abstract We present a mathematical model to describe

competitive growth of spherical precipitates in reaction-

controlled systems. In this model the flux of solute atoms

through the interface depends on the interface migration

velocity and on the differences of chemical potential at the

interface. The growth-rate obtained is dependent on the

precipitate radius, much like in the diffusion-controlled

case. Numerical simulations were performed using a

modified finite-difference approach where the time-step

increase changes during evolution to avoid dissolution of

more than one precipitate each step. By using the conti-

nuity equation we obtained an analytical function that

represents the self-similar shape of the precipitate-size

distribution dependent of the growth-parameter m. The

effect of m on the coarsening evolution was investigated.

Our results show that the precipitate size distribution

obtained from the numerical simulations agrees well with

the analytical solution. As predicted by the theory, we

obtained the growth parameter (m = 4) and the temporal

dependence of the mean-radius (t1/2) different of the

diffusion case, m = 6.75 and t1/3. We also show that the

self-similarity of the PSD is independent of the initial PSD.

Introduction

The competitive growth of second-phase particles, named

Ostwald Ripening, is a common phenomenon that occurs in

a variety of situations, as for example phase separation,

solidification and ageing. Probably one of the best known

examples is the growth of a finely dispersed distribution of

metastable precipitates in solid state alloys. The knowledge

and control of such phenomena are of great technological

importance for applications like photoluminescence [1],

properties of nanostructured materials [2], and in inter-

connection lines in microelectronic devices [3, 4], among

others.

The process of Ostwald Ripening consists in the growth

of large particles at the expense of the dissolution of small

particles, and its driving force is the reduction in the total

interfacial energy. The well-known classical quantitative

description is due to Lifshitz and Slyozov [5] and Wagner

[6], and is called the ‘‘LSW’’ theory (see Ref. [7] for a

review). According to the LSW theory, the average length

of particles increases linearly with time elevated to 1/3. For

systems achieving long-time coarsening evolution, the

precipitate size distribution (PSD) exhibits a self-similar

behavior for a specific value of the growth parameter,

m = 6.75. This theory presented for the first time the

important characteristics of power-law evolution and

dynamics scaling, that are nowadays considered as

universally valid for first-order phase transitions.

The LSW is a ‘‘mean-field’’ theory, in which the

precipitate evolution occurs via diffusive interaction with

a mean solute concentration field. Assuming spherical

precipitates, the solute concentration at the precipitate–

matrix interface is given by the Gibbs–Thomson equation.

The evolution of a given precipitate is a result of the

balance between the Gibbs–Thomson concentration and
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the mean field concentration. There is always a particular

radius, named critical radius, in which those concentra-

tions have exactly the same values, resulting that pre-

cipitates with this length do not growth or dissolve.

Precipitates larger than the critical radius will grow, while

the smaller ones will dissolve. The theory is known to be

valid for conservative and disperse systems. There were

many efforts to improve the theory in order to best fit

with experimental results [7, 8] considering diffusion-

controlled growth.

The case of reaction-controlled growth has been much

less investigated, since the introductory work of Wagner

[6]. In a recent paper [3] we presented a collection of

experimental results on the growth of Al–Cu metastable

precipitates in the presence of a distribution of He bubbles

in the matrix. We observed that there are many effects of

the bubble system on the evolution of the precipitate sys-

tem, some of them being expected to occur at the precip-

itate–matrix interface, where we observed a concentration

of large gas cavities.

In his seminal work [6], Wagner presented an analytical

function f(r,t) for the description of the shape of the pre-

cipitate size distribution (PSD) for diffusion controlled-

growth and reaction controlled-growth. Starting from the

Gibbs–Thomson equation and from considerations of the

continuity equation for f(r,t), he obtained a general function

for the description of both processes. Taking into account

comparison between the parameters characteristic of dif-

fusion (the diffusion coefficient D) and interface reaction

(the reaction coefficient k) he was able to deduce a specific

PSD for each process.

In this contribution we present a model for the

description of Ostwald Ripening of precipitates in systems

where the diffusion occurs faster than the reaction at the

precipitate–matrix interface, i.e., reaction-controlled

growth. Our model is based on fundamental physical

concepts well established in the field of materials science,

like interface mobility, chemical potential, and flux of

atoms. Our model considers that the flux of atoms through

the interface is proportional to the interface mobility and

dependent on the difference of chemical potential, instead

of concentration gradients. From these assumptions we

obtained directly the equation of the precipitate growth-

rate. We also obtained the function for the PSD, that is

dependent of the growth parameter m. We studied the effect

of this growth-parameter on the coarsening evolution and

showed that the self-similarity occurs for a value of m = 4,

while in the diffusion case it is well known that m = 6.75.

On the other hand we showed that, independent of the

shape of the initial PSD, self-similarity is always achieved

after a transient regimen.

In the next section we present a derivation of the

equation of growth-rate. Next we obtain the self-similar

form of the PSD and compare it with Wagner’s PSD. The

following sections are devoted to numerical methods,

discussions and conclusions.

Precipitate growth-rate

We consider a dispersion of spherical precipitates in an

infinite matrix. The growth of a given precipitate is related

to the velocity of the precipitate–matrix interface migra-

tion, given by [9]:

v ¼ M
DlB

Xb
ð1Þ

where M is the mobility of the interface, DlB is the

difference of chemical potential at the interface, and Wb is

the atomic volume of b. The flux of atoms through the

interface is:

jB ¼ �M
DlB

X2
b

ð2Þ

and the total flux across a spherical interface of radius r,

that involves a precipitate of radius R is:

~J ¼
I
~j � d~A ¼ �4pr2jB ð3Þ

The volume increase of a precipitate of radius R during a

time interval dt is:

4pR2 dR ¼ 4pXbjBr2 dt ð4Þ

Now, considering that the reaction occurs only at the

interface, we can assume that r = R. Using Eq. 2 we obtain:

dR

dt
¼ �MDlB

Xb
ð5Þ

The difference in chemical potential at the interface is

given by the relation [9]:

DlB ¼ RgT ln
Ci

Ce

� �
� RgT

Ce

Ci � Ceð Þ ð6Þ

where Rg is the universal constant of gases, T is

temperature, Ci is the solubility at the interface of the

ith precipitate and Ce is the solute concentration in

equilibrium with a flat interface. The solubility Ci

depends on the interface curvature and is obtained

directly from the linear approximation of the Gibbs–

Thomson equation:
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CðRÞ ffi Ce
a 1þ 2cVb

RgTR

� �
ð7Þ

where c is the surface free-energy and Vb is the atomic

volume of b.

By substitution of Eq. 7 in Eq. 5 we obtain the growth-

rate of the ith precipitate in terms of its radius:

dRi

dt
¼ 2Mc

1

Re

� 1

Ri

� �
ð8Þ

A fundamental aspect of Ostwald Ripening theories is

that there always exist precipitates that are in a steady state,

i.e., not growing and not dissolving. This particular pre-

cipitate can be named ‘‘critical’’, in a sense similar to that

of nucleation theory. Precipitates larger than the critical

will grow, while the smaller ones will dissolve. This sug-

gests that we can replace Re in Eq. 8 by the critical radius

R*. Thus, our equation for the growth-rate becomes:

dRi

dt
¼ 2Mc

1

R�
� 1

Ri

� �
ð9Þ

Introducing the nondimensional quantities:

ri ¼
Ri

R�0
; r� ¼ R�

R�0
; dt0 ¼ 2Mc dt

R�0
; ð10Þ

we obtain:

dri

dt0
¼ 1

r�
� 1

ri
ð11Þ

Self-similar distribution function

One characteristic of competitive growth processes is the

self-similar behavior of the PSD. In this section we present

a derivation of an analytical equation that represents the

shape of the self-similar PSD. The procedure we follow is

very similar to the classical one applied by other authors [8,

10] for diffusion-controlled growth.

Defining a reduced-radius and a reduced-time:

q ¼ r�

ri
; s ¼ ln

r�

r�0

� �
ð12Þ

and using Eq. 11 we obtain

dq ¼ q� 1

qr�dr�
ds� qds ð13Þ

If we introduce a new quantity m, defined as:

m ¼ 2dt0

ðr�0Þ
2

ð14Þ

we get:

dq
ds
¼ 1

q
m q� 1ð Þ � q2
� �

ð15Þ

If we assume that the total solute volume of the system

is a conservative quantity, Eq. 15 should be zero. It is

possible to show that conservation is satisfied if dq3

ds ¼ 0 and
d2q3

ds2 ¼ 0, from whish we obtain:

m ¼ 4:

Integration of Eq. 14 gives:

r�i
� �2� r�0

� �2¼ 2
t

m
ð16Þ

That is, the variation of the square of the critical radius

is linearly dependent of time. This result is very similar to

that of the diffusion-controlled case, as discussed in the

introduction. From Eq. 16, the introduced quantity m can be

named ‘‘growth-parameter’’.

It is common to describe the Ostwald Ripening in terms

of a distribution function f(R,t), defined in such manner that

f(R,t)dR represents the number of precipitates with radius

between R and R + dR at time t. This function has to satisfy

the following continuity equation in parameter space [6]:

of

ot
¼ � o

oR
f
oR

ot

� �
ð17Þ

The function f(R,t) can be separated in two parts, one

depending only on time, T(t), and one depending only on

particle size F(q). The last one is the function we are

interested. It satisfies a normalization condition:

Z 1
0

FðqÞdq ¼ 1 ð18Þ

During the coarsening evolution, solute supersaturation

in the matrix tends to zero, which means that almost the

total quantity of solute atoms are contained within the

precipitates. Taking this in account and considering the

reduced time defined in (12), Eq. 17 takes the form:

o e�3sFðqÞð Þ
os

¼ � o

oq
e�3sFðqÞ
� � oq

os

� �
ð19Þ

Using Eqs. 15 and 18 we obtain:

FðqÞ ¼ 3q
mðq� 1Þ � q2

exp

Z q

0

3q
mðq� 1Þ � q2

dq

� �
ð20Þ

This equation represents the shape of the self-similar

PSD. Figure 1 presents the shape of this equation for

various values of the growth-parameter m.
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In Fig. 2 we present the behavior of the derivatives of Eq.

15 for various values of m. It is possible to see that, as dis-

cussed above, solute conservation only is satisfied for m = 4.

In Fig. 3 we present a comparison of our PSD with that

presented by Wagner [6]:

Fðq; tÞ ¼ K

1þ t
s0

R

	 
2
q

25

ð2� qÞ5
e�ð

3q
2�qÞ ð21Þ

where q = r/r* £ 2 and K is a integration constant defined

to ensure normalization: � F(q ,t)dq = 1. From Fig. 3, it is

obvious that both PSD looks very similar. This indicates that

it may be possible to obtain some physical relation between

the two sets of parameters used. We live this question for a

future contribution. Here we simply use Fig. 3 as a valida-

tion of our PSD and, consequently, of our model.

Numerical methods

In our simulations we used a modified finite-difference

approach with a variable time-step. The radius of the ith

precipitate is obtained from the scheme:

Fig. 1 Shape of the analytical distribution function—Eq. 20—for

different values of the growth-parameter m

Fig. 2 Behavior of the derivatives of Eq. 15 for various values of m

Fig. 4 Successive snapshots of

our simulation showing the

coarsening evolution

Fig. 3 Comparison of our PSD with Wagner’s [6] PSD
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riðt0 þ Dt0Þ ¼ riðt0Þ þ
dri

dt0
Dt0 ð22Þ

where the time-step Dt¢ is calculated to avoid the

dissolution of more than one precipitate each step,

reducing numerical oscillations during simulation. Thus,

if rmin is the radius of the smaller precipitate at time t¢:

0 ¼ rminðt0Þ þ
drmin

dt0
Dt0 ) Dt0 ¼ � rmin

drmin=dt0
ð23Þ

Our simulation procedure follows the steps:

1. Generation of the initial PSD;

2. Calculation of the mean radius, smaller radius and

critical radius;

3. Calculation of the time-step;

4. Calculation of the growth-rate for each precipitate;

5. Generation of the new PSD from step 4;

6. Back to step 2.

In addition, we performed a repopulation procedure

each time the number of precipitates falls bellow statistical

significance. This procedure is made in such a way to

maintain the instantaneous shape of the PSD. Simulation

goes on until the desired evolution time t = R Dt¢ is

achieved.

In the simulations, each precipitate of the initial PSD

was distributed randomly in a two dimensional grid and

its central position was fixed until it dissolves into the

matrix. This may simulate a spatial dependence of the

precipitate evolution, but we have to remember the

mean-field character of the theory. That is, this is an

artificial effect we introduced to guide the eyes during

simulation.

Results and discussion

Figure 4 presents successive snapshots of our simulation.

The initial distribution appears at t¢ = 0. It is possible to

observe that the system evolves from an initial disperse

system to a system with few larger precipitates. This is just

a well known characteristic of Ostwald Ripening processes.

It is possible to observe a very fast evolution of the system,

which is expected due to Eq. 16, that is, the evolution of
Fig. 5 Successive size histograms of the distribution for different

values of the nondimensional variables t¢ and r*

Fig. 6 Comparison between our numerical PSD with the analytical

prediction for three different simulation times
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reaction-controlled growth is faster than in the diffusion

case.

In Fig. 5 we show the successive size histograms of the

distribution. We observe that the mean radius of the dis-

tribution grows together with the standard-deviation, which

is also a characteristic of the OR evolution.

The self-similarity of PSD becomes apparent when we

plot the same as in Fig. 5, but in terms of the reduced

radius q. We used Eq. 20 to compare the PSD obtained

from our numerical results with the predicted distribution.

Figure 6 presents these results for three evolution times. It

is possible to see that the numerical PSD quickly reaches

the theoretical form and from this time on remains with the

same shape.

In Fig. 7 we present a plot of the variation in the square

of the critical radius as a function of time, showing that

there is a linear dependence, in agreement with Eq. 16.

From Eqs. 10 and 14 it is possible to argue about the

physical meaning of the growth parameter m, as a parameter

that relates the critical radius with the interface mobility

and the interface free energy. In this sense, m = 4 can be

interpreted as the condition between interface mobility and

interface free energy that has to be satisfied to reach self-

similarity.

In the simulations, we used a initial PSD of the same

shape of that predicted by Eq. 20. However, we also

investigated the influence of different shapes for the initial

PSD on the evolution. Figure 8(a–c) shows the evolution

for an initial PSD with m = 2 compared to the self-similar

PSD of m = 4. Figure 8(d–f) shows the same for m = 6. We

observed that, no matter the form of the initial PSD, the

numerical simulation always reaches the predicted shape

after a sufficient evolution time.

Conclusions

Summarizing, we presented a model for the description

of Ostwald Ripening of precipitates in reaction-controlled

growth. Our formulation starts from the interface-

migration velocity and from the consideration that the

flux of solute atoms across the interface is dependent of

the differences of chemical potential at the interface.

Fig. 8 Convergence of our numerical PSD for different shapes of the initial PSD. (a) Initial PSD with m = 2; (d) initial PSD with m = 6

Fig. 7 Linear dependence of the square of the critical radius with

time
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We obtained the equation of precipitate growth-rate and

the analytical form of the self-similar distribution func-

tion, dependent of the growth-parameter m. In our deri-

vation we obtained the dependence of the critical radius

with time as t1/2 and the value of the growth-parameter

of m = 4. The results of our numerical simulations agree

well with the theoretical predictions. We investigated the

effect of m on the coarsening evolution and showed that

the self-similarity of the PSD does not depends on the

initial PSD.
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